

MG2639_V3 Module Hardware Design User Manual

Version: V1.2

© ZTE Corporation. All rights reserved. 版权所有 中兴通讯股份有限公司 保留所有权利

Copyright Statement

If you accept this manual of ZTE Corporation, it means that you have agreed to the following terms and conditions; if you don't agree, please stop using this manual.

The copyright of this manual belongs to ZTE Corporation. ZTE Corporation reserves any rights not expressly granted in this manual. The contents in this manual are the proprietary information of ZTE Corporation. This manual and any image, table, data or other information contained in this manual may not be reproduced, transferred, distributed utilized or disclosed without the prior written permission of ZTE Corporation.

ZTE and **ZTE中兴** are the registered trademark of ZTE Corporation. All other trademarks appeared in this manual are owned by the relevant companies. Nothing contained in this manual should be construed as granting, by implication, estoppel, or otherwise, any license or right to use any trademarks displayed in this manual without the prior written permission of ZTE Corporation or third-party obligee.

This product conforms to the design requirements of relevant environment protection and personal safety. The storage, usage and disposal of this product should comply with the product user manual, relevant contracts or requirements of laws and regulation in relevant countries.

ZTE Corporation keeps the right to modify or improve the product described in the manual without prior notice; and meanwhile keeps the right to modify or retract this manual. If there is anything *ambiguous* in this manual, please consult ZTE Corporation or its distributor or agent promptly.

Version update description

Product version	Document version	Document No.	Document update descriptions	Date of release
MG2639_V3	V1.0		Released for the first time	2013-9-6
MG2639_V3	V1.1		Add Refer to GPS design 4.6	2013-11-08
MG2639_V3	V1.2		 the module's thickness has changed from 2.68mm to 3.0mm. delete 'GPS supports passive antenna only' in Section 4.6. Add Section 4.7 'Connection Method of GPS Active Antenna'. 	2014-1-4

Writer

Document version	Date	Written by	Checked by	Approved by
1.0	2012-8-23	Cai Zongfei		
1.1	2013-11-08	Cai Zongfei		
1.2	2014-1-4	Zhao Xiaolin		

With strong technical force, ZTE Corporation can provide CDMA/GPRS/WCDMA module customers with the following all-around technical support:

- 1. Provide complete technical documentation;
- 2. Provide the development board used for R&D, test, production, after-sales, etc.
- 3. Provide evaluations and technical diagnosis for principle diagram, PCB, test scenarios;
- 4. Provide test environment;

ZTE Corporation provides customers with onsite supports, and also you could get supports through telephone, website, instant messenger, E-mail, etc.

Preface

Summary

This document describes MG2639_V3 module's product principle diagram, module's PINs, hardware interface and module's structure, and instructs the users to perform hardware design of modules, and quickly and conveniently design different kinds of wireless terminals on the basis of this module.

Target Readers

This document mainly applies to the following engineers:

- System designing engineers
- Mechanical engineers
- Hardware engineers
- Software engineers
- Test engineers

ZTE中兴

Contents

1	GEN	ERAL DESCRIPTION OF MODULE	1
	1.1	INTRODUCTION OF MODULE'S FUNCTIONS	1
	1.2	MODULE'S APPLICATION BLOCK DIAGRAM	2
	1.3	ABBREVIATIONS	
2	DES	CRIPTIONS OF MODULE'S EXTERNAL INTERFACES	6
	2.1	DEFINITIONS OF MODULE'S INTERFACES	6
	2.2	ANTENNA INTERFACE	8
	2.3	ANTENNA INTERFACE'S RF PERFORMANCE	11
3	MOI	DULE'S ELECTRICAL CHARACTERISTICS	12
	3.1	DESCRIPTIONS OF LEVELS OF INTERFACE SIGNALS	12
		3.1.1 RESET	12
		3.1.2 UART	,,,,,,12
		3.1.3 I2C	12
		3.1.4 SPI	13
		3.1.5 PCM	13
		3.1.6 USB	14
		3.1.7 ADC	14
		3.1.8 PWM	14
		3.1.9 LCD	14
		3.1.10GPS/GLONASS/BEIDOU	15
		3.1.11CHARGING	16
		3.1.12 SIM CARD INTERFACE	16
		3.1.13 AUDIO INTERFACE	16
		3.1.14NETWORK SIGNAL INDICATION	17
	3.2	MODULE'S POWER CONSUMPTION	17
	3.3	RELIABILITY CHARACTERISTICS	17
	3.4	ESD CHARACTERISTICS	18
4	INTI	ERFACE CIRCUIT DESIGN	19
	4.1	RESET AND POWER DESIGN	19

ZTE中兴

	4.2	UART INTERFACE	21
		4.2.1 DESCRIPTIONS OF UART1 INTERFACE	23
		4.2.2 DESCRIPTIONS OF UART2 INTERFACE	
	4.3	SIM CARD INTERFACE	24
	4.4	AUDIO INTERFACE	
	4.5	CHARGING INTERFACE	
	4.6	GPS INTERFACE	28
	4.7	CONNECTION METHOD OF GPS ACTIVE ANTENNA	28
5	РСВ	DESIGN	
U	5.1	PCB DESIGN	
6	MOD	DULE BOARD'S MOUNTING PROCESS AND BAKING GUIDE	30
	6.1	MODULE'S MOUNTING PROCESS	30
		6.1.1 PROCESS ROUTING SELECTION	30
		6.1.2 SOLDER PASTE SELECTION	30
		6.1.3 DESIGN OF INTERFACE BOARD'S PAD & THICKNESSES OF GREEN (WHITE OIL AT THE MODULE ON THE INTERFACE BOARD	-
		6.1.4 DESIGN OF STEEL MESH APERTURE AT THE MODULE BOARD'S PA INTERFACE BOARD	-
		6.1.5 MODULE BOARD'S MOUNTING	31
		6.1.6 FURNACE TEMPERATURE CURVE	32
		6.1.7 REFLOW METHOD	33
		6.1.8 MAINTENANCE OF RETURNED DEFECTS	33
	6.2	MODULE'S BAKING GUIDE	33
		6.2.1 MODULE'S BAKING ENVIRONMENT	34
		6.2.2 BAKING DEVICES AND OPERATION PROCEDURE	34
		6.2.3 PARAMETER SETTINGS OF BAKING DEVICES	34
7.	MEC	HANICAL DIMENSIONS	35
	7.1	APPEARANCE DIAGRAM	35
	7.2	MODULE'S ASSEMBLY DIAGRAM	36
	7.3	MODULE'S PCB PACKAGE DIMENSIONS	37

Figures

Figure 1-1 Module's application block diagram	3
Figure 2-1 π shape matching network diagram	9
Figure 2-2 Antenna interface diagram	
Figure 2-3 RF test socket dimensions	
Figure 4-1 Power & reset circuit reference design principle diagram	
Figure 4-2 Power reference circuit	20
Figure 4-3 Power-on/off time sequence	21
Figure 4-4 UART interface reference design diagram	
Figure 4-5 UART1 DCE – DTE connection relationship diagram	23
Figure 4-6 UART2 DCE—DTE connection relationship diagram	24
Figure 4-7 SIM card circuit reference design diagram	25
Figure 4-8 Audio interface circuit reference design principle diagram	26
Figure 4-9 Charging interface circuit reference design principle diagram	27
Figure 5-1 Furnace temperature curve	错误!未定义书签。
Figure 6-1 MG2639_V3 appearance diagram	
Figure 6-2 Module's assembly diagram	
Figure 6-3 Relevant package dimensions from TOP view	
Figure 6-4 Relevant package dimensions from BOTTOM view	

Tables

Table 1-1 Module's functions	1
Table 2-1 60pin stamp-hole definitions	6
Table 2-2 Antenna interface's RF performance	11
Table 3-1 UART interface signal definitions	12
Table 3-2 I2C interface signal definitions	13
Table 3-3 SPI Interface signal definitions	13
Table 3-4 PCM interface signal definitions	13
Table 3-5 USB interface signal definitions	14
Table 3-6 ADC interface signal definitions	14
Table 3-7 PWM interface signal definitions	14
Table 3-8 LCD interface signal definitions	14

Table 3-9 GPS/GLONASS/Beidou interface signal definitions	15
Table 3-10 GPS basic parameters	15
Table 3-11 Charging interface signal definitions	16
Table 3-12 SIM card interface signal definitions	16
Table 3-13 Audio interface signal definitions	17
Table 3-14 MG2639_V3 power consumption	17
Table 3-15 MG2639_V3 module's temperature characteristics	18
Table 3-16 ESD characteristics	18
Table 4-1 Voltage characteristics	
Table 4-3 UART1 interface definitions	23
Table 4-4 UART2 interface definitions	24

1 General description of module

Developed by ZTE Corporation, MG2639_V3 is a kind of GSM850/EGSM900/DCS1800/ PCS1900 industrial module with the independent GPS function, which can be built in the Set-Top-Box, vehicle-mounted terminals through a 60-PIN stamp-hole interface, and it allows users to send/receive Emails, browse the web pages and download at high speed anywhere and anytime.

In a place where the GSM network is covered, users can get access to the Internet any time, send/receive SMS and dial/answer voice calls, etc. In the field of mobile data communication, it provides a highly free and convenient solution to users and truly realizes the dream of mobile office.

This chapter mainly provides a general description of the module, including basic functions and logic block diagram.

1.1 Introduction of module's functions

See the functions of MG2639_V3 module in table 1-1:

Parameters	MG2639_V3
	General Features
Frequency bands	GSM850/EGSM900/DCS1800/PCS1900
GPS	GPS/GLONASS/Beidou
Dimensions	30.0 × 25.0 x 3.0mm
Weight	7g
Operating temperature	-35°C~+75°C
Limited temperature range	-40°C~+85°C
Storage temperature	-40°C~+85°C
Performance	
Operating voltage	3.4V~4.2V
Operating voltage	Typical=: 3.8V
	Standby current: 24mA@-75dBm
Standard power consumption	Sleep current: 1mA
Standard power consumption	Talk Current:: 128mA@-75dBm
	Max. Current: 300mA@-104dBm
May TV notion	GSM850/EGSM900: Class 4 (2W)
Max. TX power	DCS1800/PCS1900: Class 1 (1W)
Rx. signal sensitivity	<-106dBm
Interfaces	

Table 1-1 Module's functions

This document is not allowed to transmit without ZTE Corporation's permission

Parameters	MG2639_V3	
Connector	60pin Stamp-hole interface	
Antenna	SMT 50 Ω antenna connector	
Integrated Full Duplex UART	AT commands/Data transmission	
SIM card socket level	1.8V/3.0V	
Data service		
GPRS	Class 10	
Mobile Station	Class B	
Max Downlink	85.6kbps	
Max Uplink	42.8kbps	
Protocol	Internal TCP/IP & UDP protocol stack	
Protocol	Embedded FTP	
SMS		
	Support TEXT/PDU Mode	
	Point-to-point MO/MT	
	SMS Cell Broadcast	
Voice call		
	Audio encoder HR/FR/EFR/AMR//	
Echo Cancellation/Volume Control/DTMF		
AT Command Set		
	GSM 07.05/GSM 07.07/ZTE Proprietary AT Commands	

1.2 Module's application block diagram

See the application block diagram of MG2639_V3 in the following figure:

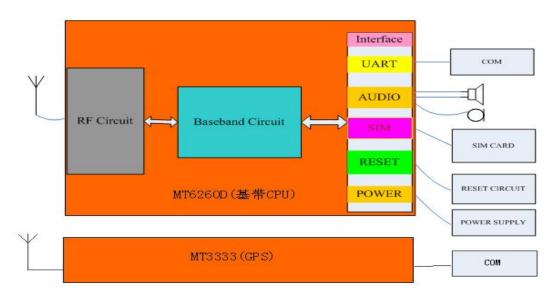


Figure 1-1 Module's application block diagram

1.3 Abbreviations

Α	
ADC	Analog-Digital Converter
AFC	Automatic Frequency Control
AGC	Automatic Gain Control
ARFCN	Absolute Radio Frequency Channel Number
ARP	Antenna Reference Point
ASIC	Application Specific Integrated Circuit
В	
BER	Bit Error Rate
BTS	Base Transceiver Station
С	
CDMA	Code Division Multiple Access
CDG	CDMA Development Group
CS	Coding Scheme
CSD	Circuit Switched Data
CPU	Central Processing Unit
D	
DAI	Digital Audio interface
DAC	Digital-to-Analog Converter
DCE	Data Communication Equipment
DSP	Digital Signal Processor
DTE	Data Terminal Equipment
DTMF	Dual Tone Multi-Frequency
DTR	Data Terminal Ready
Е	
EDGE	Enhanced Data Rate for GSM Evolution
EFR	Enhanced Full Rate
EGSM	Enhanced GSM

ЕМС	Electromagnetic Compatibility	
EMC	Electro Magnetic Interference	
ESD	Electronic Static Discharge	
ESD	European Telecommunication Standard	
F	European Telecommunication Standard	
FDMA	Frequency Division Multiple Access	
FDMA	Full Rate	
G	Full Kate	
GPRS	General Packet Radio Service	
GSM	Global Standard for Mobile Communications	
GPS	Global Positioning System	
H		
HR	Half Rate	
I		
IC	Integrated Circuit	
IMEI	International Mobile Equipment Identity	
ISO	International Standards Organization	
ITU	International Telecommunications Union	
L	L'and Constal D'anlas	
LCD	Liquid Crystal Display	
LED	Light Emitting Diode	
M		
MCU	Machine Control Unit	
MMI	Man Machine Interface	
MEDE	Mobile Station	
MTBF	Mean Time Before Failure	
P		
PCB	Printed Circuit Board	
PCL PCS	Power Control Level	
PCS	Personal Communication System	
	Protocol Data Unit	
PLL	Phase Locked Loop	
PPP R	Point-to-point protocol	
RAM	Random Access Memory	
RF	Radio Frequency	
ROM	Read-only Memory	
RMS	Root Mean Square	
RTC	Real Time Clock	
S		
SIM	Subscriber Identification Module	
SMS	Short Message Service	
SMS	Surface Mount Technology	
SRAM	Static Random Access Memory	
Т	State Numerin freeds Fieldery	
TA	Terminal adapter	
TDMA	Time Division Multiple Access	
ТЕ	Terminal Equipment also referred it as DTE	
U		
UART	Universal asynchronous receiver-transmitter	
Unit	omversar asynemonous receiver-transmitter	

UIM	User Identifier Management	
USB	Universal Serial Bus	
USIM	Universal Subscriber Identity Module	
V		
VSWR	Voltage Standing Wave Ratio	
Ζ		
ZTE	ZTE Corporation	

2 Descriptions of module's external interfaces

MG2639_V3 module connects externally through a 60PIN stamp-hole interface.

Definitions of module's interfaces 2.1

See the definitions of MG2639_V3 module's 60PIN stamp-hole interface in the following table:

PIN No.	PIN Name	Functions	Default signal direction, whether or not used for GPIO (X)	Descriptions	Remarks
1	GND	Ground		Ground	
2	RF_ANT	RF	I/0	RF antenna plug	
3	GND	Ground		Ground	
4	RING	UART1	Output, GPIO9	Ringer signal indication	The voltage varies upon an incoming call or receipt of text message. 2.8V IO
5	GND	Ground		Ground	
6	VBAT	Power	Input	Work voltage	3.4~4.2V
7	RSSI_LED	LED	Output, GPI058	Network signal indication	 Need add dynatron to drive. The LED is ON at high level. -Power on state: the LED is off; Network searching state: the LED blinks at 3Hz Idle state: the LED blinks at 1Hz -Traffic state (call, data): the LED blinks at 5Hz
8	URTS1	UART1	Output, GPIO47	Ready to send	2.8V IO
9	UCTS1	UART1	Input, GPIO48	Clear to send	2.8V IO
10	DCD1	UART1	Output, GPIO15	Carrier detection	2.8V IO
11	SIM_RST	SIM card	Output	SIM card reset	
12	SIM_CLK	SIM card	Output	SIM card clock	
13	SIM_DATA	SIM card	I/0	SIM card data	
14	VSIM	SIM card	Output	SIM card voltage	
15	GND	Ground		Ground	

Table 2-1 60pin stamp-hole definitions

This document is not allowed to transmit without ZTE Corporation's permission

16	GPS_ANT	GPS	Input	GPS antenna	
17	GND	Ground	-	Ground	
18	V_GPS	GPS	Input	GPS power input	3.4V~4.2V
19	GPS_URXD	GPS	Input	GPS port	2.8V IO
20	GPS_UTXD	GPS	Output	GPS port	2.8V IO
21	VRTC	GPS RTC Power	Input	Connect button battery	2.0V~3.3V
22	GPS_FIXED_L ED	GPS	Output	GPS status indicator	2.8V IO, externally connect dynatron to drive the LED
23	BATSNS	Charging control	Input	Battery voltage detection	Need externally connect charging circuit
24	ISENSE	Charging control	Input	Charging current detection	Need externally connect charging circuit
25	VCHG	Power	Input	Charging power	4.3V~5V
26	CHR_LDO	Charging control	Output	Charging ON/OFF	2.8V
27	GATDRV	Charging control	Output	Charging dynatron control	Need externally connect charging circuit
28	ADCIN	Analogue signal input	Input	ADC voltage detection	0~2.8V
29	URXD1/SPIM OSI	UART1/SPI	Input, GPIO20	Receiving data for serial port, UART1 can be used as SPI interface when not used	2.8V IO
30	UTXD1/SPIMI SO	UART1/SPI	Output, GPIO21	Port sending, UART1 can be used as SPI interface when not used	2.8V IO
31	SYSRST_N	Reset	Input	Reset signal	Valid at low level
32	EAR_L	Analogue audio	Output	Earpiece speaker anode	
33	RECP	Analogue audio	Output	Receiver speaker anode	
34	RECN	Analogue audio	Output	Receiver speaker cathode	
35	MIC_P1	Analogue audio	Input	Earpiece MIC anode	
36	MIC_P0	Analogue audio	Input	Receiver MIC anode	
37	MIC_N0	Analogue audio	Input	Receiver MIC cathode	
38	PWRKEY_N	Power key	Input	Power on/off	Valid at low level; need external connect a open-collector or open-drain switch.
39	DTR1	UART1	Input, GPIO5	Data terminal ready _WAKEUP	2.8V IO
40	DSR1	UART1	Output,	Data set ready	2.8V IO

			GPI019		
41	VDDIO	LDO output	Output	2.8V	
42	GND	Ground	output	Ground	
43	URXD2	UART2	Input, GPIO22	Receiving data from serial port	2.8V IO
44	UTXD2	UART2	Output, GPIO23	Transmitting data from serial port	2.8V 10
45	USB_DM	USB	I/0	USB data -	
46	USB_DP	USB	I/0	USB data +	
47	LSDA0	Serial LCD	Output, GPIO38	Serial LCD data cable data0	1.8V IO
48	LSCE0B0	Serial LCD	Output, GPIO40	Serial LCD enabled	1.8V IO
49	LSRSTB	Serial LCD	Output, GPIO46	Serial LCD reset	1.8V IO
50	LSCK0	Serial LCD	Output, GPIO37	Serial LCD clock cable	1.8V IO
51	LSDI0	Serial LCD	Input, GPIO39	Serial LCD data cable input	1.8V IO
52	LSA0DA0	Serial LCD	Output, GPIO36	Serial LCD data cable1	1.8V IO
53	SDA28/SPICS	I2C/SPI	I/O, GPIO2	I2C data cable, also used for SPI chip select	2.8V IO
54	SCL28/SPISC K	I2C/SPI	Output, GPIO1	I2C clock cable, also used for SPI clock;	2.8V IO
55	PWM/EARDE T	PWM output	Output, GPIO0	PWM output, PWM can be used as earpiece insert detection when not used	2.8V IO
56	PCMRST	PCM reset	Output, GPIO56	Reset external PCM settings	2.8V 10
57	PCMOUT	РСМ	Output, GPI054	PCM data output	2.8V IO
58	PCMCLK	РСМ	Output, GPI050	PCM clock	2.8V IO
59	PCMSYNC	РСМ	Output, GPI055	PCM bytes SYNC	2.8V IO
60	PCMIN	РСМ	Input, GPI053	PCM data input	2.8V IO

2.2 Antenna Interface

Regarding the antenna of MG2639_V3 module, proper measures should be taken to reduce the access loss of effective bands, and good shielding should be established between external antenna

and RF connector. Besides, external RF cables should be kept far away from all interference sources such as high-speed digital signal or switch power supply.

According to the standard for mobile devices, the stationary wave ratio of MG2639_V3 module's antenna should be between 1.1 and 1.5, and input impedance is 50 ohm. Different environments may have different requirements on the antenna's gain. Generally, the larger gain in the band and smaller outside the band, the better performance the antenna has.

Isolation degree among ports must more than 30dB when multi-ports antenna is used. For example, between two different polarized ports on dual-polarized antenna, two different frequency ports on dual-frequency antenna, or among four ports on dual-polarized dual-frequency antenna, isolation degree should be more than 30dB.

MG2639_V3 module provides both GSM and GPS antenna interface, and either interface provides both RF socket and stamp-hole connection method; therefore users can select reasonably according to the product form to optimize the cost of BOM.

Scenario 1:

PIN2 and PIN16 are respectively used as the input pin for GSM and GPS antenna. Pay attention to the following when using it as the antenna's feed PIN:

(1) The feed connected to PIN2 or PIN 16 is 500hm micro-strip or strip line. To approach the module, put π shape matching network for later tuning. See π shape matching network in the diagram below:

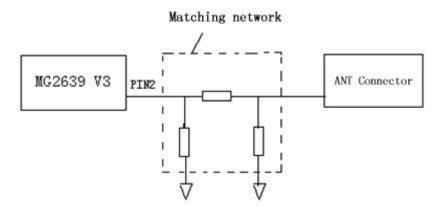


Figure 2-1 π shape matching network diagram

(2) The RF wires must be kept away from the GND, and generally the distance should be 3 times of the width of RF wires.

(3) It's forbidden to put some interference sources such as DC to DC, WIFI module around RF wires or RF port.

Scenario 2:

When using GSM/GPS RF socket as the antenna feed, disconnect PIN2/PIN16 from the main board and make sure there are some empty areas below or around PIN2/PIN16. Keep 2mm distance between the surface of PIN2/PIN16 and GND, and drill holes below PIN2/PIN16. It's not suggested to use the compatible design of PIN2/PIN16 at the same time when using the RF connector.

Figure 2-2 Antenna interface diagram

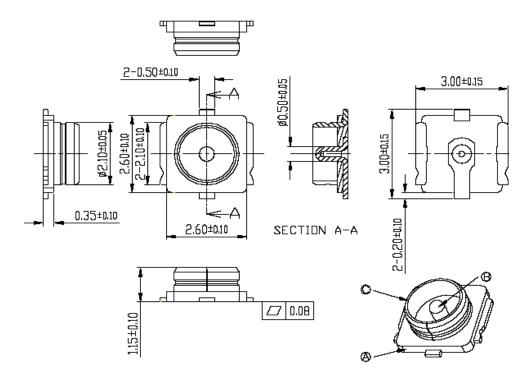


Figure 2-3 RF test socket dimensions

2.3 Antenna interface's RF performance

See the antenna interface's RF performance in table 2-2:

Antenna interface's RF performance	Module's uplink (MS->BTS)	Module's downlink (BTS->MS)	Max. Tx. Power (dBm)	Antenna interface's Rx. sensitivity
GSM850	824MHz-849MHz	869MHz-894MHz	33±2	< -107dBm
EGSM900	880MHz-915MHz	925MHz-960MHz	33±2	< -107dBm
DCS1800	1710MHz-1785MHz	1805MHz-1880MHz	30±2	< -106dBm
PCS1900	1850MHz-1910MHz	1930MHz-1990MHz	30±2	< -106dBm

Table 2-2 Antenna	interface's R	F performance
	meetidee 5 m	periormunee

3 Module's electrical characteristics

The chapter mainly describes the module's electrical characteristics, including the level, power consumption, reliability of module's interfaces.

3.1 Descriptions of levels of interface signals

It describes the MAX, MIN and typical value of the level of module's external interfaces.

3.1.1 Reset

The reset PIN is pulled up to 2.8V (Vmax=2.9V, Vmin=2.7V, Typical=2.8V) through the resistance inside the module.

The SYSRST_N PIN is used to reset the module's main chipset. Pull down the SYSRST_N signal 500ms to reset the module.

3.1.2 UART

MG2639_V3 module provides three serial interfaces. The UART1 supports 8-wire serial BUS interface (see signal definitions in table 4-3); while UART2 supports 2-wire serial interface only. The module can communicate externally and input the AT commands through the UART interface. The GPS UART is used for GPS information output.

Classification	No.	Definitions	I/0	Description Rema	
UART1 29 URXD1 Output		Receiving data from serial port	2.8V IO		
UARTI	30	UTXD1	Input	Transmitting data from serial port	2.8V IO
UART2	43	URXD2	Output	Receiving data from serial port	2.8V IO
UARIZ	44	UTXD2	Input	Transmitting data from serial port	2.8V IO
GPS UART	19	GPS_URXD	Output	Receiving data from serial port	2.8V IO
UI S UAKI	20	GPS_UTXD	Input	Transmitting data from serial port	2.8V IO

Table 3-1 UART interface signal definitions

3.1.3 I2C

MG2639_V3 module provides one I2C BUS interface. SCL and SDA have been pulled up to 2.8V through 2.2K resistance inside the module, and it supports 7BIT/10BIT seeking and high-speed transmission mode.

Classification	No.	Definitions	I/0	Description	Remarks
120	53	SDA	I/0	I2C data cable	2.8V IO
I2C	54	SCL	Output	I2C clock cable	2.8V IO

Table 3-2 I2C interface signal definitions

Note: the software doesn't support this interface by default, therefore it requires customization.

3.1.4 SPI

MG2639_V3 module provides one SPI BUS interface, SPICS & SPISCK signal multiplex with the I2C interface, while SPIMOSI & SPIMISO signals multiplex with the UART interface. When UART2 and I2C function are not used, it can be configured as the SPI interface.

Classification	No.	Definitions	I/0	Description	Remarks
SPI	53	SPICS	Output	SPI chip select	2.8V IO
	54	SPISCK	Output	SPI clock	2.8V IO
	29	SPIMOSI	Input	SPI data input	2.8V IO
	30	SPIMISO	Output	SPI data output	2.8V IO

Table 3-3 SPI Interface signal definitions

Note: the software doesn't support this interface by default, therefore it requires customization.

3.1.5 PCM

MG2639_V3 module adopts its 56-60 PINs as the PCM interface, through which users can expand the audio DAC.

Classification	No.	Definitions	I/0	Description	Remarks
	56	PCMRST	Output	Reset external PCM settings	2.8V IO
DOM	57	PCMOUT	Output	PCM data output	2.8V IO
РСМ	58	PCMCLK	Output	PCM clock	2.8V IO
	59	PCMSYNC	Output	PCM bytes SYNC	2.8V IO
	60	PCMIN	Input	PCM data input	2.8V IO

Table 3-4 PCM interface signal definitions

Note: the software doesn't support this interface by default, therefore it requires

customization.

3.1.6 USB

MG2639_V3 module integrates the USB interface and conforms to USB1.1 interface specifications. The module can connect the host through the interface and provide up to 12Mbps data rate. Users can upgrade the software via the interface.

Classification	No.	Definitions	I/0	Description	Remarks
USB	45	USB_DM	I/0	USB data -	
	46	USB_DP	I/0	USB data +	

Table 3-5 USB interface signal definitions

3.1.7 ADC

MG2639 module's 28th pin can provide up to 98.1 KSPS sampling rate and 10BIT A/D conversion function.

Table 3-6 ADC interface signal definitions

Classification	No.	Definitions	I/0	Description	Remarks
ADC	28	ADCIN	Input	Analogue signal input	0-2.8V

Note: the software doesn't support this interface by default, therefore it requires customization.

3.1.8 PWM

Table 3-7 PWM interface signal definitions

0	Classification	No.	Definitions	I/0	Description	Remarks
	PWM	55	PWM	output	Pulse width modulation output	2.8V IO

Note: the software doesn't support this interface by default, therefore it requires customization.

3.1.9 LCD

MG2639 V3 module provides a serial LCD interface and supports the LCD device with serial communication. It supports up to 480*320 resolutions.

Table 3-8 LCD interface signal definitions

Classification	No.	Definitions	I/O Description		Remarks
	47	LSDA0	Output Serial LCD data cable data0		
	48	LSCE0B0	Output	Serial LCD enabled	
	49	LSRSTB	Output	Serial LCD reset	
LCD	50	LSCK0	Output	Serial LCD clock cable	
	51	LSDI0	Output	Serial LCD data cable input	
	52	LSA0DA0	Output	Serial LCD data cable data1	

Note: the software doesn't support this interface by default, therefore it requires customization.

3.1.10 GPS/GLONASS/Beidou

MG2639_V3 module's GPS function is completely independent from its wireless data communication. The GPS cell provides independent power input and PIN to output the GPS information through the serial port.

Classification	No.	Definitions	I/0	Description	Remarks
	16	GPS_ANT	Input	GPS antenna	
	18	V_GPS	Input	GPS power input	3.4-4.3V
	19	GPS_URXD	Input	GPS port	NMEA data syntax
GPS	20	GPS_UTXD	Output	GPS port	NMEA data syntax
	21	VRTC	Input	RTC power	Can connect to the button battery
	22	GPS_FIXED_L ED	Output	GPS status indicator	Valid at high level

Table 3-9 GPS/GLONASS/Beidou interface signal definitions

Table 3-10 GPS basic parameters

Frequency	C/N0 (-130dB)	Searching satellites current	STANDBY mode Current (3.8V)	SLEEP mode Current (3.8V)	BACKUPm ode current (3.8V)
1575.42MHz	40	28mA	400uA	6mA	50uA

3.1.11 Charging

MG2639 V3 module provides the charging of Li battery through the design of external circuits.

See section 4.5 for external reference design.

Classification	No.	Definitions	I/0	Description	Remarks
	23	BATSNS	Input	Charging control	Battery voltage detection
	24	ISENSE	Input	Charging control	Battery current detection
Charging	25	VCHG	Input	Power	Charging power supply
	26	CHR_LDO	Output	Charging control	Charging on/off
	27	GATDRV	Output	Charging control	Charging dynatron control

Table 3-11 Charging interface signal definitions

Note: the software doesn't support this interface by default, therefore it requires customization.

3.1.12 SIM card interface

MG2639_V3 module supports the SIM card interface conforming to ISO 7816-3 standard, and it supports SIM cards with two different standards: 1.8V and 3.0V.

Users should note that the SIM card's electrical interface should be defined exactly the same as the SIM card socket.

Classification	No.	Definitio	I/0	Description	Remarks
		ns			
	14	VSIM	Output	SIM card voltage	
CIM	11	SIM_RST	Output	SIM card reset	1.8V/3V, Max. output
SIM	12	SIM_CLK	Output	SIM card clock	current 30 mA
	13	SIM_DATA	I/0	SIM card data	

Table 3-12 SIM card interface signal definitions

3.1.13 Audio interface

MG2639_V3 module supports 2CH audio signal inputs/outputs. The two MIC inputs are internally capacitive coupled with the offset voltage, and directly connected to the receiver. See the audio interface signals in the table 3-2:

Classification	No.	Definition	I/0	Description	Remarks
	37	MIC_N0	Input	Receiver on the host	Differential input
	36	MIC_P0	Input	Receiver on the host	Differential input
AUDIO	35	MIC_P1	Input	Receiver on the earpiece	Differential input
AUDIO	34	RECN	Output	Speaker on the host	Differential output
33	33	RECP	Output	Speaker on the host	Differential output
	32	EAR_L	Output	Speaker on the earpiece	Single-ended output

Table 3-13 Audio interface signal definitions

3.1.14 Network signal indication

The RSSI_LED is driven at high level.

- ---Power-on status: the LED turns off;
- ---Network searching status: the LED blinks at 3Hz;
- ---Idle status: the LED blinks at 1Hz;
- ---Traffic status (call, data): the LED blinks at 5Hz.

The output status of RSSI_LED PIN is defined according to the software protocol. The RSSI_LED PIN is a general I/O port with the output driving capability 4mA.

3.2 Module's power consumption

It describes the module's power consumption under each status:

Status	Frequency	Rx. power	Min.	Average	Max.	Remarks
Power-off				15uA		VBAT=4.0V
Sleep				2mA		
Standby				24 mA		
	GSM850			240mA		
Call	EGSM900			240mA		
Call	GSM1800			180 mA		
	GSM1900			175 mA		
Network searching				78mA		

Table 3-14 MG2639_V3 (GPRS) power consumption

3.3 Reliability characteristics

The module's reliability testing items include: High/low temperature operation, high/low temperature storage, thermal shock, alternating temperature humidity, etc. The test results must conform to the industrial requirements. See the module's working temperature in the table below:

Parameters	Descriptions	Min.	Max.	Remarks
То	Operation temperature	-35℃	75℃	
Та	Limited temperature	-40℃	+85℃	Make sure not to compromise the RF performance apparently
Ts	Storage temperature	-40℃	+85℃	

Table 3-15 MG2639_V3 module's temperature characteristics

3.4 ESD characteristics

See the ESD characteristics at room temperature.

Interface	Testing items	Testing requirements	Performance
Automotistarface	Air discharge	±8 kV	Nothing unusual
Antenna interface	Contact discharge	±6 kV	Nothing unusual
SIM card interface	Air discharge	±8 kV	Nothing unusual
	Contact discharge	±6 kV	Nothing unusual

Table 3-16 ESD characteristics

4 Interface circuit design

The chapter provides the reference design on the interface circuit according to the module's functions and describes the precautions.

4.1 Reset and power design

See the reference design principle of power and reset circuit in figure 4-1. Select appropriate parameters according to the actual selected power supply since VD1 is TVS tube, and select CJ2305 from Changjiang Electronics or DMP2305U-7 from DIODES since VT1 is MOS tube. Refer to figure 4-2 for the design of power circuit. Select MIC29302 and adjust the output voltage through the adjustment of R5 and R6. Please refer to MIC29302's specification for detailed parameters design. Please note that the components in the figure are just for your reference. For details, please adjust according to the actual circuit.

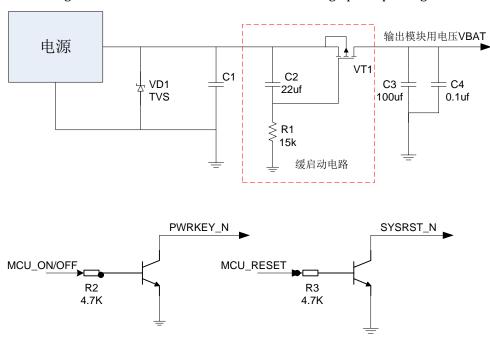
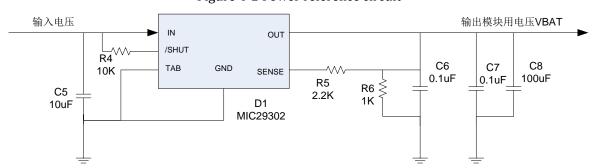



Figure 4-1 Power & reset circuit reference design principle diagram

This document is not allowed to transmit without ZTE Corporation's permission

Figure 4-2 Power reference circuit

Power design

MG2639_V3 module is powered by VBAT. If the external power cannot be stably started, it's recommended to add buffer circuit in the circuit. See the module's required voltage characteristics in table 4-1.

Table 4-1 Voltage characteristics

Classification	Vmin	Typical	Vmax
Input voltage	3.4V	3.8V	4.2V
Input current	1mA		300mA(Depends on the network signal)

The module is very strict with the requirements on the power supply and grounding:

(1). The filtering must be performed on the power and grounding, and the power ripple must be controlled under 50Mv. Do not power any other part in the system because it might affect the RF performance.

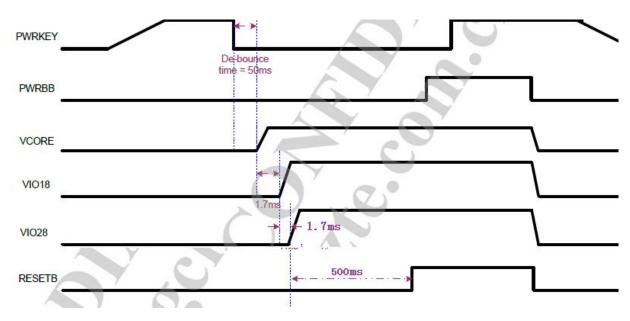
(2). Select the power cables with at least 80mil traces during the layout and keep the integrality of ground line.

(3). Make sure the Max. instantaneous output current is larger than 2A if the Max. input current is very high.

Power on

The module is under power-off status after it's normally powered on. To turn on the module, provide a 2s-5s low level pulse to the PWRKEY_N PIN. If one 1K resistance is connected with the PWRKEY_N PIN, the module can be automatically powered on after connected to the power supply.

• Power off


To turn off the module, use AT command "AT+ZPWROFF" or provide a 2s~5s low level pulse to the PWRKEY_N PIN.

Reset

Use the above method to firstly "power-off" and then "power-on" to hard reset the module. If the external reset function has to be used, provide a low level pulse lasting at least 500ms to the SYSRST_N PIN within 2 seconds after the module is turned on. Before that, the external MCU_RESET signal must be kept at low level. See the reset circuit design in figure 4-1.

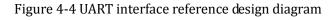
Suspend the SYSRST_N PIN if not used.

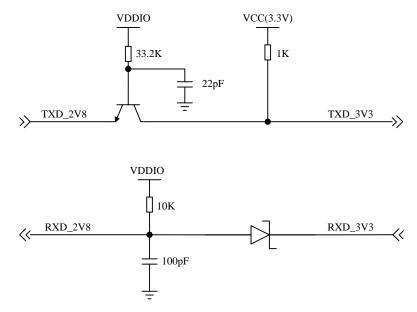
See the module's power-on/off time sequence in figure 4-3 below:

Figure 4-3 Power-on/off time sequence

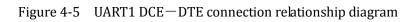
• VDDIO

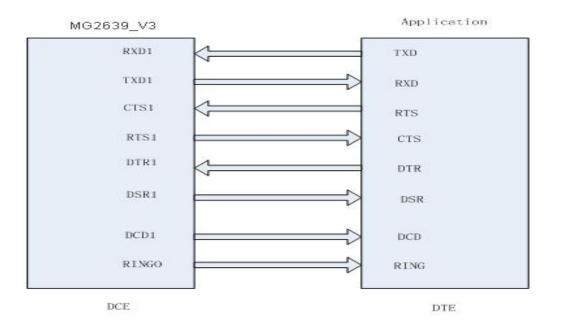
The module has one LDO voltage output pin, which can be used to supply external power to the main board. The voltage output is available only when the module is on. The normal output voltage is 2.8V, and users should absorb the current from this pin as little as possible (less than 10mA). Generally, it is recommended to use this pin to pull up the chipset PIN as per the requirements of level matching. Therefore, it's not recommended to use this pin for other purposes.


• Other advice

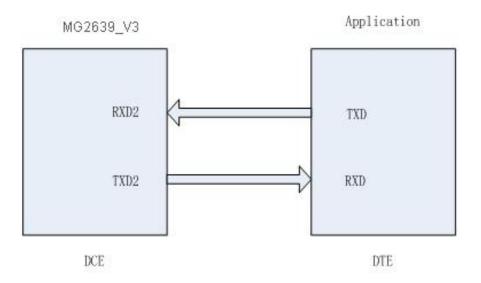

In order to make sure the data is saved safely and guarantee the safety of module's data, please don't cut off the power when the module is on.

4.2 UART interface


MG2639_V3 module provides an integrated full duplex UART1 interface (shortly referred to as UART interface) and an accessorial UART2 interface. The default baud rate is 115200bps and the external interface adopts 2.8V CMOS level signal, which conforms to RS-232 interface protocol. The UART1 interface could be used as serial interface for AT commands, data service. The UART2 interface can be used to debug the applications.


MG2639_V3 module's output I/O level is 2.8V, therefore it needs level conversion when connecting with standard 3.3V or 5V logic circuit (such as MCU or RS232 drive chip MAX3238). The most common method is to use a dynatron to realize the level conversion. Figure 4-3 shows the level conversion to 3.3V through the UART interface of MG2639_V3. The resistance and capacitance in figure 4-3 are just for reference, and they need to be recalculated during the design. The diode in Figure 4-4 is Schottky diode (forward voltage drop is 0.3V). If you select other diodes, please select one with lower forward voltage drop to make sure RXD_2V8 is below the threshold when inputting low level.

4.2.1 Descriptions of UART1 interface



See the definitions of UART1 interface in table 4-3.

Classification	No.	Definitions	I/0	Descriptions	Remarks
	29	RXD1	Input	Receiving data	DTE transmits serial data
	8	RTS1	Output	Ready to send	DTE informs DCE to send
	30	TXD1	Output	Transmitting data	DTE receives serial data
	39	DTR1	Input	Data terminal ready	DTE is ready
UART	9	CTS1	Input	Clear to send	DCE has switched to Rx. mode
	4	RING	Output	Ringtone indication	Inform DTE upon a remote call
	40	DSR1	Output	Data set ready	DCE is ready
	10	DCD1	Output	Carrier detection	Data link connected

4.2.2 Descriptions of UART2 interface

Figure 4-6 UART2 DCE – DTE connection relationship diagram

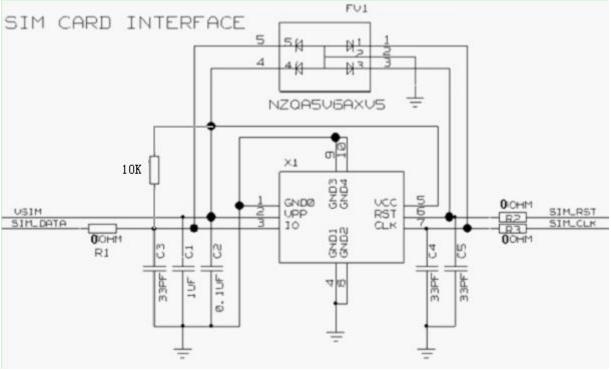

See the definitions of UART2 interface in table 4-4.

Table 4-4 UART2 interface definitions

Classification	No.	Definitions	I/0	Descriptions	Remarks
UART	43	RXD2	Input	Receiving data	DTE transmits serial data
	44	TXD2	Output	Transmitting data	DTE receives serial data

4.3 SIM card interface

MG2639_V3 module supports 1.8V or 3.0V SIM card. Refer to figure 4-7 for design.

Figure 4-7 SIM card circuit reference design diagram

NOTE:

- (1) The SIM card PCB wiring should be laid closely around the module as much as possible.
- (2) The VSIM, CLK, DATA and RST signals should be enveloped by the ground wires. The position of 33pF capacitance should be reserved on CLK, DATA and RST signals wiring and the position should be close to the SIM card socket to prevent the interference sources from affecting the SIM card's reading/writing.
- (3) Since the ESD components are very close to the SIM card socket, it's recommended to add TVS components on 4-CH SIM card signals, meanwhile, the signal wires need go through TVS component before entering the module's baseband processor during the layout to avoid damaging the module.
- (4) The width of VSIM power wiring should be above 6mil at least (recommended to use 8mil).
- (5) The filter capacitance of VSIM power wiring adopts 1uf (the value can't be larger than 10uf or smaller than 1uf), and then 0.1uf capacitance is added.

4.4 Audio interface

MG2639_V3 module provides audio input and output interfaces through its PINs. There are 2 Speaker interfaces and 2 Microphone interfaces. Only one pair I/O works at the same time. See the audio interface circuit in figure 4-8.

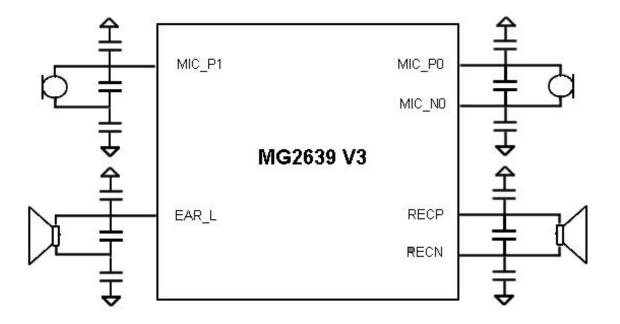


Figure 4-8 Audio interface circuit reference design principle diagram

• Microphone

The MIC_NO & MIC_PO are both differential interfaces, and they can also be used for single-ended input. It's recommended to use differential method to reduce the noises. The MIC2_P interface is used for single-ended input. Directly connect to the microphone since these two inputs are internally coupled and 1.9V offset voltage is generated.

• Speaker

The RECP & RECN are both differential interfaces with 32 ohm impedance, while the EAR_L is single-ended interface with 32 ohm impedance.

GSM/GPRS module audio interface is designed as below:

• Design of the audio interface on the receiver

Select the microphone with the sensitivity lower than -51.5dB since the max. gain inside MIC0 can reach 51.5dB. The level of MIC1_P0 is about 1.48V

Note: *if other kind of audio input method is adopted, the dynamic range of input signals should be within 0.5V. If the dynamic range is lower than 0.5V, then the pre-amplifier should be added. If the dynamic range is higher than 0.5V, then network attenuation should be added.*

• Design of the audio interface on the earpiece

Select the microphone with the sensitivity lower than -51.5dB since the max. gain in MIC1 can reach 51.5dB. The level of MIC_P1 is about 1.73V.

Note: In order to get better audio effect for users, we present the following suggestions:

1) During the process of using MG2639_V3 module, it's advised to use 100pf & 33pf capacitance on its external audio path, and serially connect with the beads to improve the audio quality.

2) Connect TVS tube or pressure sensitive resistance on the audio path (approaching the module's interface) to prevent the ESD from damaging the module.

3) Make sure the use environment and module are well grounded and there is no mutual influence.

4) The power ripple supplied to the module is less than 50mV.

4.5 Charging interface

The PINs used for MG2639_V3 module's charging interface are 23-27 PINs. See the charging external connection in the figure below: D3 adopts CJ10P20DE6G or MBT35200MT1; VT1 adopts 2SK3019, NTA4001NT1 or SSM3K15FS; R1 is 0.2Ω current inspection resistance, which requires 1206 encapsulation.

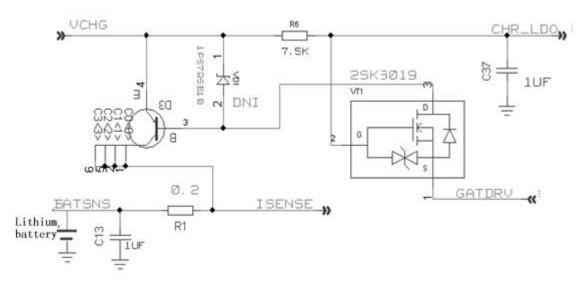


Figure 4-9 Charging interface circuit reference design principle diagram

This document is not allowed to transmit without ZTE Corporation's permission

4.6 GPS Interface

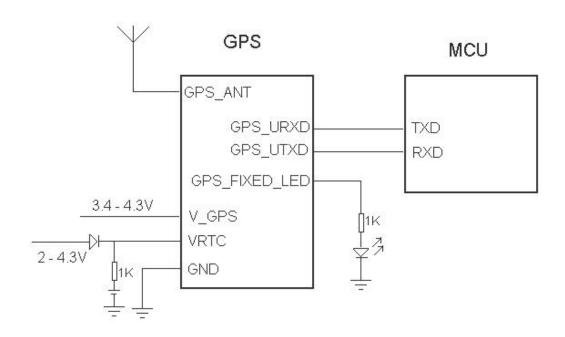
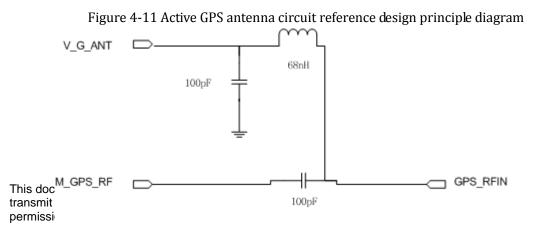



Figure 4-10 GPS Interface Circuit Reference Principle Diagram

It's recommended to connect with GPS RF socket through a 50Ω RF cable. The good matching of antenna and module enables GPS to obtain better receiving sensitivity. V_GPS works as the PIN to supply 3.4-4.3V power to GPS; VRTC works as the PIN to supply 2-4.3V power to RTC; a button battery can also supply power to RTC. Keep power supplied by RTC can effectively shorten first positioning time as V_GPS powers up after power-down. If you don't ask too much of first positioning time as V_GPS powers up, you can directly connect VRTC to V_GPS power supply.

4.7 Connection Method of GPS Active Antenna

In the figure below, V_G_ANT works as the power supply of GPS antenna. Set V_G_ANT voltage according to the requirements of selected GPS active antenna, connect M_GPS_RF to GPS_ANT, and connect GPS_RFIN to GPS active antenna. The resistance of RF cable in the figure is 50Ω.

5 PCB design

5.1 PCB design

1) Enough Pad area must be reserved for the module's grounding pin to guarantee adequate grounding and avoid interference on the sensitivity.

2) Copper-clad and wiring are forbidden in the nearby areas of the RF stamp-hole.

3)For the convenience of testing and maintenance, it is recommended to drill holes on the PCB to expose JTAG test points.

4) The wiring between the SIM card socket and MCU should be as short as possible to prevent signals from being affected by long wiring, which might result in the failure of SIM card recognition.

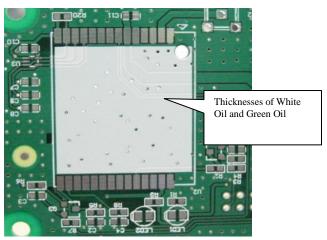
6 Module Board's Mounting Process and Baking Guide

6.1 Module's mounting process

Now with the increasing number of module board products in our company, customers have encountered numerous welding problems of module boards during the process of using the products. Therefore, we specially formulate the guide to the module board's mounting process for customers in order to ensure the FTT of soldering at the client-end. The current standard of flatness in our company is 0.15mm (measurement method: put the module at the marble surface, use the feeler gauge to measure the clearance width at the maximum cocked position. Do not exert a force on the module during the measurement). If there is any question, please contact the relevant staff in our company. The module must be baked at 125° for 8 hours prior to second reflow.

6.1.1 Process Routing Selection

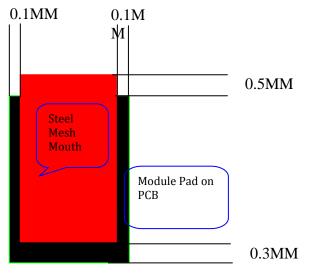
As our module boards are manufactured with the lead-free technology and meet the ROHS requirements, we recommend that the lead-free manufacturing process should be used upon the selection of process routing for module board and interface board.


6.1.2 Solder Paste Selection

The solder pastes with metal particle TYPE3 and TYPE4 can fulfill the welding requirements. It is accordingly recommended to use the no-clean solder paste. If the solder paste which needs cleaning is used, we cannot guarantee the components on the module board could withstand the washing of the cleaning solvents. This might cause the functional problems of such components and affect the appearance of the module. Make sure the thickness of solder paste at the module's PAD is between 0.18mm and 0.2mm during the printing.

6.1.3 Design of interface board's PAD & thicknesses of green oil and white oil at the module

on the interface board


For the design of interface board's pad, please refer to the standard pad design recommended by ZTE Mobile Telecom Co., Ltd. It is recommended that the sum of the thickness of the green oil and white oil at the module on the interface board should be less than 0.02mm because the greater thickness would affect the welding quality of module board and interface board.

(The diagram is just for your reference; it does not represent the actual module encapsulation) In addition, other components cannot be arranged within 2mm around the module on the interface board to ensure the maintenance of the module.

6.1.4 Design of steel mesh aperture at the module board's pad on the interface board

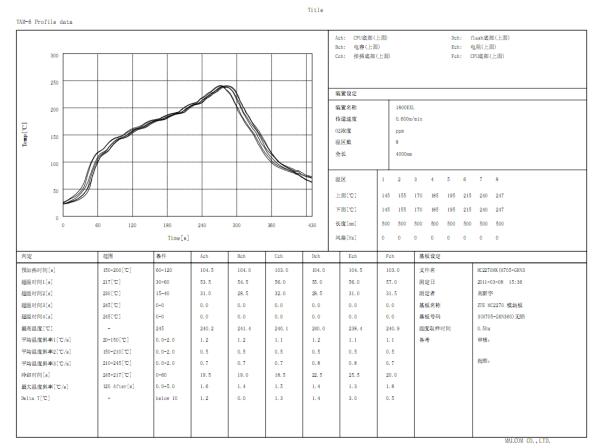
The thickness of the steel mesh on the interface board is selected based on the principle of comprehensive consideration according to the encapsulation type of components on the interface board. The expected thickness of steel mesh at the module on the interface board is 0.15mm (locally increased to 0.18MM at the module position), or just 0.18mm. In respect of the steel mesh aperture, the inner side of the pad is cut by 0.3mm, the two sides are respectively cut by 0.1mm, and the outside is extended by 0.5mm.

6.1.5 Module Board's Mounting

The pallets, which are suitable for mounting, have been made for many modules. If our company has offered the pallets, customers can directly apply them in Pick & placement machine; otherwise, customers need make a loading tool similar to the pallet. Customers can take out the modules from

This document is not allowed to transmit without ZTE Corporation's permission

the packaging box, put them into the pallet according to the sequence and direction, and then start mounting.



Loading pallet

Mounting Pressure: In order to ensure a good contact between the module and the tin of the interface board, and the convenient welding, the pressure of placing the module board on the interface board is 2-5N according to our experiences. Different modules have different numbers of pads, therefore the pressure selected are different. Customers can select proper pressure based on their own situations.

6.1.6 Furnace Temperature Curve

As for the furnace temperature curve of module, we recommend that the peak temperature should be about $240 \sim 245$ °C. The time of the temperature above 217 °C is $30 \sim 60$ seconds. Besides, the temperature at the preheating area is kept at $150 \sim 200$ °C, and the time is $60 \sim 120$ seconds.

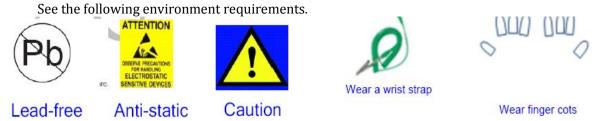
The furnace temperature test board must be a physical board mounted on the interface board, and there must be the testing wires at the module board.

6.1.7 Reflow Method

If the interface board used by customers is a double-sided board, it is recommended to mount the module board at the second time. In addition, it is preferable for the interface board to reflow on the mesh belt at the first mounting and the second mounting. If such failure is caused by any special reason, the fixture should be also used to reflow in order to avoid the deformation of PCB during the reflow process.

6.1.8 Maintenance of Returned Defects

If any poor welding occurs to the module board and the interface board, e.g., pseudo soldering of the module board and the interface board, the welder can directly use the soldering iron to repair welding according to the normal welding parameters of our company


6.2 Module's Baking Guide

The module must be baked prior to second reflow.

6.2.1 Module's Baking Environment

The operators must wear dust-free finger cots and anti-static wrist strap under the lead-free and good static-resistant environment.

During the process of transportation, storage and disposal, you must conform to the IPC/JEDE J-STD-033 standard.

6.2.2 Baking Devices and Operation Procedure

Baking device: any oven where the temperature can rise up to 125°C or above.

Precautions regarding baking: during the baking process, the modules should be put in the high-temperature resistant pallet flatly and slightly to avoid the collisions and frictions between the modules. During the baking process, do not overlay the modules directly because it might cause damage to the module's chipset.

6.2.3 Parameter Settings of Baking Devices

Baking temperature: $125 \degree \pm 5 \degree C$ Baking duration: 8 hours

7. Mechanical dimensions

7.1 Appearance diagram

Figure 7-1 MG2639_V3 appearance diagram

- Dimensions (L×W×H): 30.0 × 25.0 × 3.0mm
- Weight: <6g

7.2 Module's assembly diagram

See the module's assembly diagram in figure 7-2.

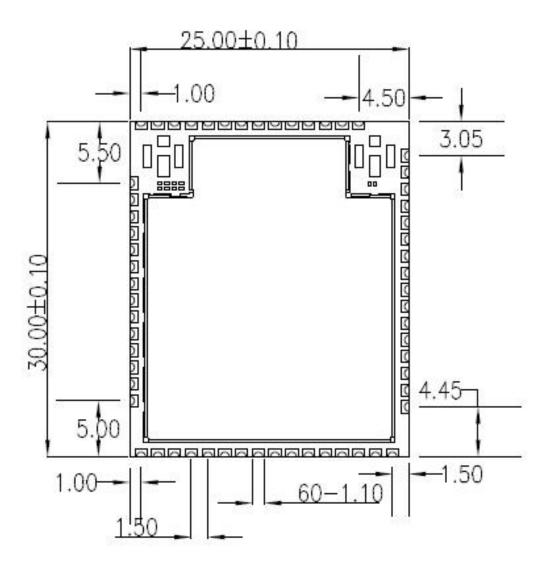
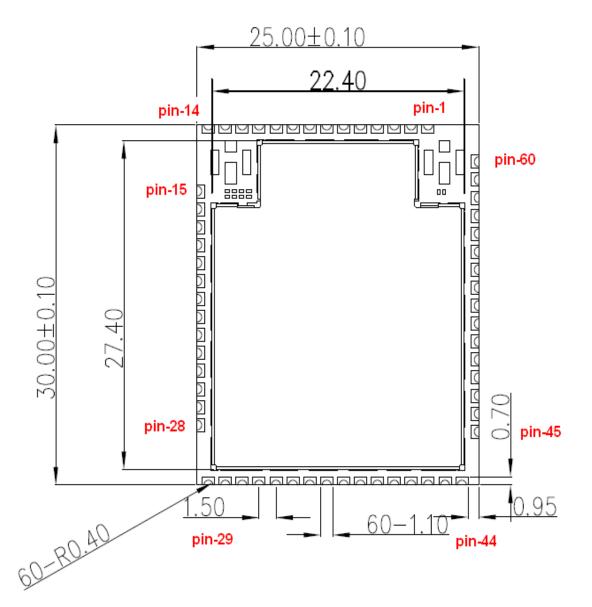
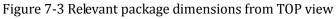




Figure 7-2 Module's assembly diagram

7.3 Module's PCB package dimensions

See the module's PCB package dimensions in figure 7-3.

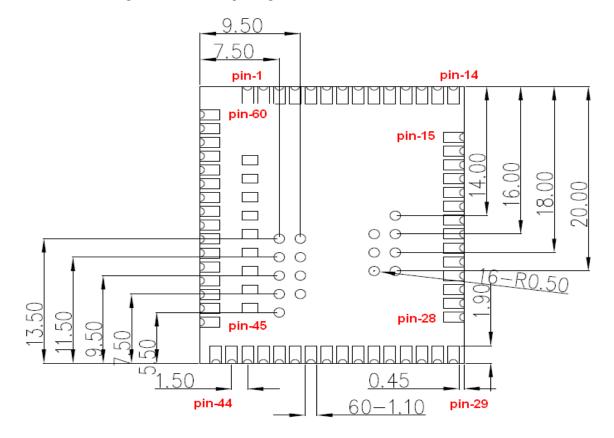


Figure 7-4 Relevant package dimensions from BOTTOM view